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Abstract
The dependences of the tunnel current on the overpotential and bias voltage for a symmetric
electrochemical contact involving two redox groups are calculated. The main physical
situations involving various combinations of the strengths of the electronic coupling of the
redox groups with each other and with the electrodes are considered in detail. The treatment is
more rigorous and complete as compared with previous work. In particular, totally adiabatic
transitions are discussed and the potential distribution in the tunnel gap is taken into account.
It is shown that the system under consideration manifests negative differential resistance and
rectification. A new effect is predicted in the current/overpotential dependence, namely the
appearance of two maxima. The experimental data of (Tran et al 2006 Faraday Discuss.
131 197) are addressed. It is concluded that they are compatible with the assumption on a
strong screening of the electric potential within the tunnel gap.

1. Introduction

Tunnel contacts with a two-center molecule confined in the
tunneling gap have been attracting the attention of researchers
since the publication of the paper by Aviram and Ratner [1]
where it was shown qualitatively that in a vacuum system the
current/voltage characteristics can be asymmetric with respect
to the sign of the bias voltage, thus demonstrating a sort of
rectification. The effect is due to an asymmetric location of
the energy levels of two molecular centers with respect to
the Fermi levels of the source and drain electrodes. These
energy levels come close to the resonance position under the
application of a bias voltage of a certain sign, thus providing
resonance electron tunneling, but they separate further for the
other sign of the bias voltage, resulting in a negligible tunnel
current. However this system in fact does not provide a real
diode-like behavior. Although the energy levels are broadened
due to the interaction with the metal electrodes the overlap of
these broadened levels at first increases with the increase of
the bias voltage, but then it reaches a maximum and decreases,
resulting in a decrease of the tunnel current.

1 Author to whom any correspondence should be addressed.

In this respect the electrochemical redox-mediated con-
tacts are often considered to be better candidates for transistor-
like elements. In particular, detailed theoretical [2–9] and ex-
perimental [10–20] studies of these contacts showed that they
can demonstrate diode-like features, negative differential re-
sistance, amplification of the current etc. Considerable atten-
tion was paid to the study of two-center electrochemical con-
tacts [21–24]. In general the behavior of these contacts is sim-
ilar to that with a single redox group. However the presence
of two redox centers suggests a larger number of physical situ-
ations. Some of them were described in [24–26]. Although
these works shed considerable light on the problem, a con-
sistent theory able to describe the experimental data is still a
challenge for researchers. Non-adiabatic sequential transitions
were mainly considered in [24, 25]. The calculations of tunnel-
ing through the resonance states of the molecular groups at the
electrodes [26] resulted in a maximum of the current as a func-
tion of the bias voltage, in contrast to an increase of the current
up to a constant value obtained in similar calculations in [21].
The main experimental results of [22] are a sigmoidal curve for
the current/bias voltage characteristics and a maximum of the
current as a function of the overpotential in the neighborhood
of the equilibrium electrode potential. The aim of the present
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Figure 1. A scheme of the bridged electrochemical contact with two
redox centers.

article is to study various physical mechanisms of electron
transfer in such systems. These mechanisms involve the cases
of weak interaction of the redox groups with each other and
with the electrodes (totally non-adiabatic limit), weak interac-
tion of the redox groups with each other (non-adiabatic transi-
tions) and their strong interaction with the electrodes (adiabatic
transitions), and other combinations of interactions. Some lim-
iting cases discussed in previous publications will be treated
in more detail, in particular with due account of the potential
distribution in the tunneling gap. In addition other physical sit-
uations will be considered, in particular totally adiabatic transi-
tions. We hope that analysis of various theoretical predictions
will allow us to draw conclusions about the mechanism which
operates under the experimental conditions of [21, 22].

The paper is organized as follows. The totally non-
adiabatic limit is considered in section 2. The adiabatic
transitions at the electrodes with the non-adiabatic electron
exchange between the redox groups in the limit of small width
of the electron energy levels are analyzed in section 3. The
non-adiabatic transitions at the electrodes with the adiabatic
electron exchange between the redox groups are considered in
section 4. Section 5 involves the case of the totally adiabatic
transitions. Discussions of the results of calculations and the
concluding remarks are given in sections 6 and 7.

2. The model and the totally non-adiabatic limit
(weak interaction of the redox groups with the
electrodes and weak interaction between the groups)

The system under consideration consists of two plane metallic
electrodes separated by a distance L in the electrolyte solution.
Keeping in mind the system of [21, 22], we will restrict
ourselves to the discussion of symmetric contacts, i.e. the
electrodes are assumed to be made of the same metal. Two
identical redox groups are placed in sequence symmetrically
between the electrodes (figure 1). The redox groups may
belong to one molecule or to two different molecules attached
to the electrodes.

When the current through each electrode is zero (at
equilibrium), the electrochemical potentials of both electrodes,
μL and μR (or the Fermi levels, εFL and εFR), coincide and
the equilibrium positions of the electron energy levels of the

Figure 2. An energy scheme of the contact.

oxidized and reduced forms of the redox groups are located
symmetrically with respect to the Fermi levels (figure 2).
The corresponding electrode potential ϕ0 is the equilibrium
potential. In general it may differ from the redox potential of
the bridge groups [27]. The positions of the electron energy
levels of the redox groups can be shifted by the variation
of the electrode potentials. Two potentials may be varied
independently in these systems, namely the overpotential η and
bias voltage V . They will be defined as follows: η = ϕ0 − ϕL

and eV = μL − μR where ϕL is the electrode potential of the
left electrode. Note that the cathode overpotential will be used
throughout the paper.

In the totally non-adiabatic limit the kinetic equations
method can be used for the calculation of the tunnel current.
Under steady-state conditions the current through any cross
section of the contact is the same. Therefore we may write
the expression for the current, e.g., as follows:

j = e [C1Redk12C2Ox − C2Redk21C1Ox] (1)

where k12 and k21 are the rate constants for the electron transfer
between the groups 1 and 2, C1Red and C2Red are average
occupations of the electron energy levels ε1 and ε2, C1Ox =
1 − C1Red and C2Ox = 1 − C2Red.

Average occupations are determined by the steady-state
balance conditions [24]

kL1 (1 − C1Red)+ k21C2Red (1 − C1Red) = k1LC1Red

+ k12C1Red (1 − C2Red) (2)

k2RC2Red + k21C2Red (1 − C1Red) = kR2 (1 − C2Red)

+ k12C1Red (1 − C2Red) (3)

where kL1, k1L, kR2 and k2R are the rate constants for the
electron exchange between the electrodes and corresponding
redox centers. General expressions for the rate constants
are given in appendix A. It should be noted that they take
into account the fact that the electron energy levels in the
metals are degenerate due to the existence of the electron
spin (see [28]). It should also be noted that the average
occupations are uniquely determined from the steady-state
balance conditions in the case where the rate constants are
independent of the average occupations. This means, in

2



J. Phys.: Condens. Matter 20 (2008) 374112 A M Kuznetsov and I G Medvedev

particular, that the energy U12 of the Coulomb repulsion
between electrons occupying the valence orbitals of groups
1 and 2 is neglected. This is a reasonable assumption in the
case of small electron hybridization between the redox groups.
In contrast, it is assumed that the Coulomb interactions U11

and U22 between the electrons which occupy the same valence
orbital are infinitely large.

The rate constants and average occupations of the redox
groups depend on the bias voltage and overpotential. In order
to find these dependences we consider a narrow tunneling gap
and neglect the influence of the bridge group on the potential
distribution within the gap. Then as was shown in [29] the
potential distribution may be described in this case within
the framework of linear electrostatics even at large potentials
(ϕ > kT/e) in view of the compensation of various effects. In
planar geometry the potential distribution has the form

�(z) = γ (z)[ϕL − ϕ
pzc
L ] + γ (L − z)[ϕR − ϕ

pzc
R ] (4)

where pzc means the potential of zero charge (the potential
where the charge of the electrode is zero) and

γ (z) = exp (z/LD)− exp (−z/LD)

exp (L/LD)− exp (−L/LD)

= sinh(z/LD)/ sinh(L/LD). (5)

Here LD is the Debye length in the electrolyte solution.
The rate constants in equations (2) and (3) to a

considerable extent are determined by the corresponding free
energies of transitions�F [27, 28]:

�FL1 = F1 − FL = ε1 − εFL +�F (1)
solv + e [ϕL − ϕs]

− e
[
ψ

(
z1; ϕL − ϕ

pzc
L , ϕR − ϕ

pzc
R

) − ϕs
]

(6)

�F2R = εFR − ε2 −�F (2)
solv − e [ϕR − ϕs]

+ e
[
ψ

(
z2; ϕL − ϕ

pzc
L , ϕR − ϕ

pzc
R

) − ϕs
]

(7)

�F12 = F2 − F1 = ε2 − ε1 +�F (2)
solv −�F (1)

sol

− e
[
ψ

(
z2; ϕL − ϕ

pzc
L , ϕR − ϕ

pzc
R

) − ϕs
]

+ e
[
ψ

(
z1; ϕL − ϕ

pzc
L , ϕR − ϕ

pzc
R

) − ϕs
]

(8)

where the Fermi energies εFL and εFR are counted from −eϕL

and −eϕR respectively (ϕL and ϕR are Galvani potentials of the
corresponding electrodes), ε1 and ε2 are the electron energies
in the redox groups counted from −eϕs. Here ϕs is the potential
in the bulk of the solution which will be taken to be zero in what
follows. �F (i)

solv is the difference of the solvation free energies
of the i th redox group in the reduced and oxidized states and
ψ(z j ; ϕL − ϕ

pzc
L , ϕR − ϕ

pzc
R ) is the potential at the site of the

location z j of the j th redox group. The latter depends on the
Galvani potentials ϕL and ϕR and on the zero-charge potentials
of the electrodes ϕpzc

L and ϕpzc
R .

In terms of the overpotential and bias voltage the free
energies of transitions take the form [27]

�F12 = F2 − F1 = e
{[
ξ1η + γ (z1) V

] − [
ξ2η + γ (z2) V

]}

(9)
�FL1 = F1 − FL = −e

[
ξ1η + γ (z1) V

] + kBT ln 2 (10)

�F2R = FR − F2 = e
{
ξ2η − [

1 − γ (z2)
]

V
} − kBT ln 2

(11)

where

ξi = 1 − γ (zk)− γ (L − zk) ; i = 1, 2. (12)

Here z1 and z2 are the coordinates of the location of the
groups 1 and 2 respectively. It follows from equation (5) that
γ (z2) = γ (L − z1) and γ (z1) = γ (L − z2). Therefore we
have

ξ1 = ξ2 = ξ = 1 − γ (z1)− γ (z2) = 1 − γ (z1)− γ (L − z1)

(13)
and

�F12 = e
[
γ (z1)− γ (z2)

]
V = e

[
γ (z1)− γ (L − z1)

]
V ,

(14)
i.e. the latter is independent of the overpotential.

The solution of equations (2) and (3) gives

C2Red = k12C1Red + kR2

k2R + k21 (1 − C1Red)+ k12C1Red + kR2
(15)

C1Red =
√

b2 + 4ad − b

2a
. (16)

It can be shown that 0 < CiRed < 1, as it should be. The
expressions for the rate constants and the quantities a, b and d
are given in appendix A.

Equations (1), (15) and (16) allow calculating the current
as a function of the overpotential and bias voltage at arbitrary
values of physical parameters. It is clear however that when
the rate constants for the electron exchange between the redox
groups and electrodes are sufficiently large, the equilibrium at
the electrodes will exist also at non-zero current. A simpler
expression for the current can be obtained in this case. In this
limit the rate determining step is the electron transfer between
groups 1 and 2. The overpotential dependence of the current
is determined in this case by that of the average occupations
C1Red and C2Red. The latter can be found from the equilibrium
equations as follows:

C1Red = kL1

kL1 + k1L
= 1

1 + exp
(
− eξη+eγ (z1)V

kB T

) (17)

C2Red = kR2

kR2 + k2R
= 1

1 + exp
(
− eξη−e[1−γ (z2)]V

kB T

) . (18)

At small values of the bias voltage (eV � E12, where E12

is the medium reorganization energy) the rate constant k12 is
approximately equal to

k12 ≈ k0
12 exp

{

−e
[
γ (z1)− γ (z2)

]
V

2kBT

}

(19)

where

k0
12 = k0 exp

(
− E12

4kBT

)
(20)

and k0 is the pre-exponential factor.
Using equations (19) and (20) in equation (1) we get

j ≈ ek0e− E12
4kB T

sh eV
2kBT

2ch eξη+eγ (z1)V
2kBT ch

eξη−e[1−γ (z2)]V
2kBT

. (21)
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It may be easily seen that at fixed value of V the
current/overpotential dependence has a maximum at ηmax equal
to

ηmax = 1
2 V . (22)

Unlike the case considered in [21], the width of the
current/overpotential maximum is independent of the medium
reorganization energy. The width equals 2kT ln{ch eμV

kT + 2 +
[(ch eμV

kT + 2)2 − 1]1/2}/(eξ) and increases from 2kT ln(3 +
81/2)/(eξ) ≈ 3.5kT/(eξ) for eμV/kT � 1 to 2 μV for
eμV/kT � 1 where μ = 0.5[1 + γ (z1)− γ (z2)].

3. Strong interaction of the redox groups with the
electrodes and weak interaction between the groups

If the interaction of the redox groups with the electrodes is
strong, the reactions of the electron exchange at each electrode
are adiabatic. At the same time the interactions of the redox
groups with each other may be either weak or strong. If the
electron interaction V12 between the redox groups is much
smaller than or of the order of kBT , the electron states of the
redox groups represent a sort of resonance at corresponding
electrodes with the densities of electron states

ρMi (ε) = 1

π

�Mi

(ε − εi)
2 +�2

Mi

; i = 1, 2;

M1 = L, M2 = R

(23)

where εi is the position of the resonance and �Mi is the
width of the resonance determined by the interaction of the
redox group with the corresponding electrode. For the sake
of simplicity we accept a spinless approximation in this
section. Generalization to account for the electron spin is
straightforward.

The positions of these resonances εi depend on the
coordinates of vibrational modes qk . For the sake of
simplicity we shall assume that the electron state of each redox
group interacts with different independent effective vibrational
modes, q1 and q2. If the widths of these resonances are small
as compared to the energy window between the Fermi levels
eV � kBT , the contribution to the current due to the overlap
of the tails of the distributions of the electron density of states
may be neglected, and the whole process may be considered as
a sequential stepwise transition with adiabatic or non-adiabatic
electron transfer between the redox groups. This approach
was used in [24]. If however the widths of the resonances are
sufficiently large, the electric current may be considered as a
result of direct tunneling between these resonances:

j = eT12
�L1�R2

Z1 Z2

1

π2

∫
dq1 dq2 exp

{
−U1 (q1)+ U2 (q2)

kB T

}

×
∫

dε
[

fL (ε)− fR (ε)
]

× 1
{[
ε − ε1 (q1)

]2 +�2
L1

} {[
ε − ε2 (q2)

]2 +�2
R2

}

(24)

where T12 = 2π
h̄ |V12|2 is the transmission probability, Zi are

the normalization factors for the configuration integrals over

coordinates of vibrational modes qi , fL and fR are the Fermi
distribution functions for the left and the right electrodes, and
Ui(qk) are the free energy surfaces for the vibrational modes.

Unlike the approach of [21], equation (24) describes
tunneling between individual energy levels rather than between
the redox groups characterized by some average occupations.
In this respect equation (24) is closer to the approach used
in [26]. It differs however from the latter in the fact that this
equation takes into account both reduced and oxidized states of
the redox groups whereas only a reduced state of the group 1
and an oxidized state of the group 2 was considered in [26]. In
our case this is manifested in the double-well shape of the free
energy surfaces. In addition we take into account the potential
dependence of the positions of the two resonances which, in its
turn, affects strongly the dependence of the tunnel current on
the bias voltage.

Assuming linear dependence of the electron energy levels
on the vibrational coordinates

εi (qi) = ε0
i − h̄ωgi qi (25)

and introducing new variables

Qi = h̄ωgi qi (26)

we write Ui in the form

Ui (Qi ) = 1

4Eri
Q2

i − 1

2
Qi − 1

π

{(
εFMi − ε0

i + eξη + eγ (zi)

× V + Qi

)
arctan

εFMi − ε0
i + eξη + eγ (zi )V + Qi

�Mi

− �Mi

2
ln

(
εFMi − ε0

i + eξη + eγ (zi)V + Qi
)2 +�2

Mi
(
εFMi − ε0

i + eξη + e γ (zi) V
)2 +�2

Mi

}

(27)

where M1 = L, M2 = R, Eri = h̄ωg2
i /2 are

the reorganization energies of vibrational modes, the Fermi
distribution functions were replaced by the stepwise functions
and a term independent of the coordinates Qi is omitted.
Equations (24)–(27) allow calculating the dependence of the
current on the bias voltage and overpotential with due account
of equation (13) and the following relationships:

ε0
i − εFL = Eri − eξη − eγ (zi)V

ε0
2 − εFR = Er2 − eξη + e (1 − γ (z2)) V .

(28)

It should be emphasized that tunneling occurs from the
occupied states of the left resonance to the free states of the
right one.

4. Strong interaction between the redox groups and
weak interaction of the groups with the electrodes

When the redox groups are linked to the electrodes via long
chain molecules one may assume that the interaction of these
groups with the electrodes is weak. At the same time the
interaction between the groups can be strong in view of their
proximity to each other. This physical situation may be
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realistic for the experimental setup of [22]. Depending on the
nature of the redox groups one may distinguish several possible
cases as concerns the occupation of these groups by the
electrons. Even each individual group may have in principle
more than one valence energy level. However, keeping in
mind the experimental system of [22], we will assume that
each group considered separately has only one valence level.
Moreover we will assume that in view of the proximity of two
groups only one electron may be located in the pair of redox
groups. This is a limit of very large Coulomb interactions
U12, U11 and U22 between the electrons. It implies that the
spin of the electrons has no influence on the energy of one-
electron states of the system and the spinless approximation
is applicable for the calculation of one-electron energy levels
of the complex consisting of two groups. The corresponding
spinless Hamiltonian describing this complex with due account
of its interaction with molecular environment has the form

H = H12 + Hph (pk, qk)+ Hint (ni , qk) (29)

H12 = ε0
1n1 + ε0

2n2 + V12c†
1c2 + V ∗

12c†
2c1 (30)

where c†
i , ci are the creation and annihilation operators for the

valence orbital |i〉 of the i th redox group having the energy ε0
i

(see the first line in equation (28)), ni = c+
i ci is the occupation

number operator, Hph is the Hamiltonian of the molecular
environment (phonons) with pk and qk as the dimensionless
momenta and coordinates of slow vibrational modes, and Hint

describes the interaction of two subsystems (see appendix B).
In the case of strong interaction of the redox groups the

eigenvalues

E0
I =

{
ε0

1 + ε0
2 −

[(
ε0

1 − ε0
2

)2 + 4
∣
∣V 2

12

∣
∣
]1/2

}/
2;

E0
II =

{
ε0

1 + ε0
2 +

[(
ε0

1 − ε0
2

)2 + 4
∣
∣V 2

12

∣
∣
]1/2

}/
2,

(31)

and valence orbitals

|I〉 = cos θ |1〉 + sin θ |2〉; |II〉 = − sin θ |1〉 + cos θ |2〉,
(32)

are more appropriate for the description of the electron states
of the complex, where

cos θ =

{[(
ε0

1 − ε0
2

)2 + 4 |V12|2
]1/2 − (

ε0
1 − ε0

2

)
}

21/2
[(
ε0

1 − ε0
2

)2 + 4 |V12|2
]1/2 . (33)

Then the average occupation numbers 〈n1〉 and 〈n2〉 of
the redox groups in the ground (bonding) state of the redox
complex equal cos2 θ and sin2 θ , respectively.

Separating the motion of the electrons and molecular en-
vironment with the use of the Born–Oppenheimer approxima-
tion we end up with the adiabatic free energy surfaces (AFES)
Uad,m(qk) (m = I, II) for the ground and first excited electron
states. In general the AFES of the ground state may have ei-
ther two potential wells or a single one [30]. In the case of
two potential wells the kinetic scheme for the calculation of
the tunnel current involves a number of transitions between the

electrodes and various electron states of the redox complex, in-
cluding both the ground state and the excited one. The normal
coordinates and frequencies of vibrational modes are in gen-
eral different for different electron states of the redox complex.
This makes the calculation of the tunnel current rather onerous
(see, e.g., [24] where only Uad,I (qk) was taken into account
approximately).

The situation is simpler in the case when the AFES of the
ground state has only one potential well. This takes place if
|V12| > 0.5E12 where E12 is the reorganization energy for the
electron transition between two redox groups (see appendix B).
Spacing of the electron energy levels in this case is always large
and the contribution of the excited (antibonding) state may be
neglected as having the order of exp(−|V12|/kBT )with respect
to the contribution of the ground state (we recall that in the
limit U12 → ∞ the redox groups can have only one electron
which occupies the bonding or antibonding level). In this limit
the problem is similar to that for a single redox group confined
in the tunneling gap and the expression for the current has the
form [28]

j = e
kLIkIR − kILkRI

kLI + kIL + kRI + kIR
(34)

It should be noted that although the bridge complex was
treated within the spinless model, equation (34) takes into
account the electron spin effect in the approximation of infinite
Coulomb repulsion (see appendix A).

The calculation of the rate constants in general may still
be rather complicated. We can use two approaches in this case.
The first one is to start from the bridge group considered as the
single bridge molecule having the bonding state |I〉 coupled
to free phonon modes. Then the tunnel current is calculated
using the usual rate constants for the non-adiabatic electron
transitions between the electrodes and the valence level E0

1 .
Within the second approach the one-electron bridge molecule
is characterized by the diabatic free energy surface which is
obtained from the expression for Uad,I (qk) considered in the
harmonic approximation near the single potential well. In this
approach the phonon frequencies and the normal coordinates
differ from those for the free phonons. Only the first approach
is considered in what follows.

The rate constants in equation (34) depend on the free
energies of transition �FIL = �F1L + ε0

1 − E0
I − δFsolv

and �FIR = �F1R + ε0
2 − E0

I − δFsolv where δFsolv =
�FsolvI−�Fsolv. Here�FsolvI is the difference of the solvation
free energies of the redox complex in the reduced and oxidized
states and �F solv = �F(1)

solv = �F (2)
solv for the symmetric

contact. Using equations (10)–(13) and (31) one obtains that

�F (2)
IL = eξη + [

γ (z1)+ γ (z2)
]

eV/2

+
{[
γ (z1)− γ (z2)

]2
(eV )2 + 4V 2

12

}1/2
/

2 − δFsolv

(35)

�F (2)
IR = eξη + [

γ (z1)+ γ (z2)− 2
]

eV/2

+
{[
γ (z1)− γ (z2)

]2
(eV )2 + 4V 2

12

}1/2
/

2 − δFsolv

(36)

5
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where �F (2)
IL = �FIL + kBT ln 2 and �F (2)

IR = �FIR +
kBT ln 2. In view of the symmetry of the contact, z1 = L − z2,
and the energy levels of the oxidized and reduced forms of the
redox groups are located symmetrically with respect to Fermi
levels so that equation (12) holds here too. It follows from
equations (35) and (36) that �F (2)

IL = �F (2)
IR = V12 − δFsolv

when V = η = 0. Therefore the equilibrium potential should
be redefined in this case: eϕ0 → eϕ0 +(V12 − δFsolv)/ξ . Then
we have

�F (2)
IL = eξη + cosh (δ/2LD)

cosh (L/2LD)
eV/2 + A/2 − V12 (37)

where δ = z2 − z1 and

A =
{[

sinh (δ/2LD)

sinh (L/2LD)

]2

(eV )2 + 4V 2
12

}1/2

. (38)

The rate constants in equation (34) are obtained from
equations (A.11)–(A.14) with the substitution of �FIL for
�F1L, �FIR for �F2R, kL〈n1〉 for kL, kR〈n2〉 for kR, IIL for
IL and IIR for IR, Er for EL and ER. Here Er is the solvent
reorganization energy in the case when the redox complex is
in the ground state. The expression for the tunneling current
takes finally the form

j = jmax
4V12 (IIL IIR)

1/2

A

(
2kBT

πEr

)1/2

×
{

exp (−Er/4kBT ) sinh (eV/2kBT ) exp

{
−

[
(�FIL)

2

+ (�FIL − eV )2
]/

8ErkBT

}}{
exp (eV/4kBT )

× cosh (a + eηV /2kBT )+ exp (−eV/4kBT )

× cosh (a − eηV /2kBT )

}−1

(39)

where jmax = ek(πEr/kBT )1/2/4 is the tunneling current for
the spinless model at z1 = z2 and |V | → ∞ (here kL = kR = k
for the symmetric contact), eηV = �F (2)

IL − eV/2,

a = 1

2
ln

(
IIL cos2 θ

IIRsin2θ

)
− (�FIL)

2

8ErkBT
+ (�FIL − eV )2

8ErkBT
(40)

and equations (A.15) and (A.16) were used for the calculation
of jmax. If |V | → ∞, j tends to jlim(V ) =
8 jmaxV 2

12/[A2(cos2 θ + 1)].
When AFES Uad,I has only one potential well (adsorption

state) we have 〈n1〉 ≈ 〈n2〉 ≈ 1/2 (see appendix B). The
reorganization energy Er can be estimated then as 〈n1〉2 EL +
〈n2〉2 ER + 2〈n1〉〈n2〉Emix = E12 where EL = ER = Emix =
E12 (see appendix B).

The current of equation (39) has a maximum at some ηmax

which is a rather complicated function of V , V12, δ/L and
LD/L. However if eV , |�F1L| � Er, one obtains that the
maximum is located at ηV ≈ 0 so that equation (37) yields

ηmax =
{[

1 − cosh (δ/2LD)

cosh (L/2LD)

]
eV/2 − A/2 + V12

}
(eξ)−1 .

(41)
The width of the curve j (η) at half-maximum equals

4kBT arccosh (2)/e in this case.

5. Totally adiabatic transitions

If the interactions both between the redox groups and between
the redox groups and the electrodes are strong, the Born–
Oppenheimer approximation can be used for the whole system
involving the electrodes and the redox groups. Therefore,
one can calculate values of the average electron occupation
numbers of the valence orbital of the redox groups and the
value of the tunneling current at fixed values of the energies
ε1(qk) and ε2(qk). We start from the case when U11 and U22

are very large but the energy U12 is neglected. In contrast to
the case considered in the previous section, this implies that
two electrons may be located in the pair of redox groups. The
spinless model can be applied in this case for the calculation
not only for one-electron states (as in the previous section) but
also for the many-electron properties of the whole electronic
subsystem. Using the non-equilibrium Green function method
as was done in [31] for the one-level bridge molecule one
obtains that

〈n1〉(qk) = 1

π

×
∫ ∞

−∞
{�L fL(ε)[(ε − ε2(qk))

2 +�2
R] +�R fR(ε)|V12|2} dε

Z(ε)
(42)

〈n2〉(qk) = 1

π

×
∫ ∞

−∞
{�R fR(ε)[(ε − ε1(qk))

2 +�2
L] +�L fL(ε)|V12|2} dε

Z(ε)
(43)

j (qk) = 2e

π h̄
�L�R |V12|2

∫ ∞

−∞
[ fL(ε)− fR(ε)]

Z(ε)
dε (44)

where

Z(ε) = (ε − ε1(qk))
2(ε − ε2(qk))

2 + (ε − ε1(qk))
2�2

R

+ (ε − ε2(qk))
2�2

L − 2 |V12|2 (ε − ε1(qk))(ε − ε2(qk))

+ (�L�R + |V12|2)2 (45)

and
εi(qk) = ε0

i −
∑

k

γikqk (46)

where γik are coupling constants. Equation (44) was also
obtained in [26] with the use of the equilibrium Green function
method.

As was shown in [31], the well defined value E(qk) of
the lowest electronic energy exists at the steady state for the
one-level bridge molecule. It was also shown that 〈na〉(qk) =
∂E(qk)/∂εa(qk) where εa(qk) is the energy of the valence
orbital and 〈na〉(qk) is its occupation number. Therefore,
AFES Uad(qk) can be defined for the total system so that the
tunnel current can be calculated as the thermal Boltzmann
average of j (qk) over AFES [31].

Generalizing the results of [32] to the two-level system,
it can be shown that the expression for the effective force
Fk acting on the kth phonon mode due to the interaction of
phonons with the valence electrons has the form

Fk =
∑

i

γik〈ni 〉. (47)

6
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If the coupling constants γik have arbitrary values (i.e., γ1k

is not proportional to γ2k), then it can be shown that AFES
Uad(qk) resulting in the forces Fk (Fk = −∂Uad(qk)/∂qk)

for the two-level system exists only in the case when
the derivatives ∂〈n1〉(qk)/∂ε2(qk) and ∂〈n2〉(qk)/∂ε1(qk) are
equal to each other. However, these derivatives are not equal in
the general case for V12 �= 0:
∂〈n1〉(qk)

∂ε2
− ∂〈n2〉(qk)

∂ε1
= 4�L�R |V12|2

×
∫ ∞

−∞
[ fL(ε)− fR(ε)][�L(ε−ε2(qk))+�R(ε−ε1(qk))]

Z 2(ε)
dε.

(48)

Thus, there is no function E(qk) which produces the
occupation numbers 〈n1〉(qk) and 〈n2〉(qk) with the aid of
equations 〈n1〉(qk) = ∂E(qk)/∂ε1(qk) and 〈n2〉(qk) =
∂E(qk)/∂ε2(qk) in the non-equilibrium case. The reason is
as follows. When �L = �R = 0 (i.e., for the two-site
system) we have two AFES Uad,I (qk) and Uad,I I (qk). Only the
lowest AFES is used for the calculations of the rate constant
of the adiabatic electrochemical electron transfer reaction [33].
When�L and�R are non-zero, two adiabatic states of the two-
site system are mixed which results in the absence of the AFES
in the non-equilibrium case. At equilibrium, fL(ε) = fR(ε),
so the rhs of equation (48) equals zero.

If V12 tends to zero, the rhs of equation (48) also tends
to zero. Then two AFES U1 and U2 can be defined as was
done in section 3 whereas equation (24) can be obtained with
the use of equations (44) and (45) in the limit V12 → 0. In
the opposite limit when V12 is large, the rhs of equation (48)
tends to zero again. This case corresponding to the adiabatic
electron transitions between the levels 1 and 2 with the rate
constant determined by AFES Uad,I (qk) (equation (B.8)) was
considered approximately in [24].

When V12 takes arbitrary values, a particular case γ2k =
Cγ1k (where C is a constant) is of interest because in this case
the single effective phonon coordinate q ∼ ∑

γikqk can be
introduced. Then εi(q) = ε0

i − γi0q where the new coupling
constants γ10 and γ20 are related by the equation γ20 = Cγ10,
and AFES

Uad(qk) = h̄ω

2
q2 − γ10

∫ q

0
〈n1〉(q ′)dq ′−γ20

∫ q

0
〈n2〉(q ′) dq ′

(49)
exists which produces the effective force Fk . However,
in this particular case the derivatives ∂〈n1〉(qk)/∂ε2(qk)

and ∂〈n2〉(qk)/∂ε1(qk) are still not equal so the equations
〈ni 〉(qk) = ∂Uad(qk)/∂εi are not yet fulfilled in the non-
equilibrium case.

When the Coulomb interaction U12 is large, we consider
the case V12 > 0.5E12 and, as in the previous section, take
into account only the lowest state E0

I . Then the method of [31]
of the calculation of the tunnel current in the totally adiabatic
regime for the one-level bridge molecule can be used with the
substitution of E0

I for ε0
a in the corresponding equations of [31].

6. Discussion

The results presented in the foregoing sections allow obtaining
two major types of the current/voltage dependences, namely

Figure 3. Dependence of the tunnel current on the overpotential
according to equations (1)–(3). The current is normalized to the
value at the maximum of the curve (4). Curve (4) is calculated with
the use of approximate equation (21). eV/kBT = 4, z1/L = 0.25,
LD/L = 0.3, Er/kBT = 20. kL/k0 = kR/k0 = 0.001 (1); 0.1 (2);
1 (3).

the dependence of the current on the overpotential at fixed
bias voltage and the dependence of the current on the
bias voltage at fixed overpotential. At small bias voltage
practically all limiting mechanisms considered above result
in a current/overpotential characteristic with a maximum in
the vicinity of the equilibrium potential (it is shifted from the
equilibrium potential by (γ − 0.5)eV /ξ ). The main difference
is in the absolute values of the current and in the width of the
maximum which depends on kBT and ξ for weak interaction
with the electrodes and also on the width of the electron energy
levels of the redox groups for the case of strong interaction
with the electrodes. Room temperature is considered in what
follows (kBT = 0.025 eV).

Figures 3, 4(a) and (b) show the dependence of the current
on the overpotential for the totally non-adiabatic case. The
shape of the current/overpotential curve depends on the rate
constants of the electron exchange with the electrodes. The
higher the rate constants, the closer the curve is to the limiting
curve corresponding to the equilibrium at the electrodes (see
curves (3) and (4) of figure 3). Figure 4(a) shows the j (η)
dependence calculated according to approximate equation (21)
which corresponds to the limiting case of equilibrium at
electrodes. The position of the maximum of the current is
independent of the position of the redox groups within the
tunneling gap as it should be for the symmetric contact in
this limit. The value of the current at the point of maximum
depends on their position via the corresponding dependence of
the values of γ (z1) and γ (z2) (figure 4(a)). The width of the
maximum strongly depends on the electrolyte concentration
and increases with the decrease of the latter (figure 4(b)).
The dependence of the current on the bias voltage for this
mechanism demonstrates a monotonic increase of the current
in the interval of absolute values of the bias voltage not
exceeding the reorganization energy for the electron transfer
between the redox groups (figure 5). The j (V ) curve has no
tendency to saturation.

For the second mechanism when the interaction between
the groups is still weak but coupling with the metals is strong

7
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(a)
(b)

Figure 4. Dependence of the tunnel current jnorm. = 2 j/[ek0 exp(−E12/4kBT )] on the overpotential according to approximate equation (21).
eV/kBT = 2, Er/kBT = 20. (a) LD/L = 0.3. z1/L = 0.1 (1); 0.25 (2); 0.45 (3). (b) z1/L = 0.3. LD/L = 0.3 (1); 0.5 (2); 1 (3).

Figure 5. Dependence of the tunnel current on the bias voltage
according to equations (1)–(3). jnorm. = ( j/k0)107. η = 0,
z1/L = 0.15, Er/kBT = 20, kL/k0 = kR/k0 = 5. LD/L = 0.1 (1);
0.3 (2).

the maximum of the j (η) dependence is located in the same
region as in figures 3 and 4. The width of the maximum
depends significantly on � (figure 6). The larger �, the
broader the maximum.

The dependences of the tunnel current on the bias voltage
at η = 0 and different values of Er, z1, LD and � are shown
in figures 7(a)–(c). Like for the totally non-adiabatic case, the
dependence on the bias voltage is monotonically increasing at
values of the bias voltage that are not large (figure 7(a)) and
reaches a maximum value at V = Vmax. Only for Er = 0.2 eV
and LD/L = 0.1 does it have a tendency to saturation in the
region V � 0.5 V (see figure 7(b)).

The results presented in figures 7(a) and (b) can be
rationalized using the following simple approach. In a certain
approximation (e.g., the neglect of �) the densities of the
electronic states ρMi(ε) (see equation (23)) averaged over the
free energy surfaces Ui(qk) (equations (24) and (27)) coincide
with the electronic densities of the reduced and oxidized forms
of the redox groups 1 and 2, respectively, i.e., ρ1(ε) ≈
exp{−[ε + Er + eγ (z1)V ]2/(4ErkBT )}/(4ErkBT )1/2 and
ρ2(ε) ≈ exp{−[ε− Er +eγ (z2)V ]2/(4ErkBT )}/(4ErkBT )1/2.
Then, as in [21], the current is proportional to

∫ 0
−eV ρ(ε) dε

Figure 6. Dependence of the tunnel current on the overpotential at
different values of the widths of the energy levels in the case of
strong coupling with electrodes and weak coupling between the
groups. eV = 0.2Er, z1/L = 0.25, LD/L = 0.3, Er = 0.5 eV.
� = 0.1Er (1);� = 0.3Er (2);� = 0.5Er (3). The current is
normalized to e2πV 2

12/h̄Er.

where ρ(ε) = ρ1(ε)ρ2(ε). However, in contrast to the case
for [21], it is important that ρ (ε) depends on V :

ρ(ε) = 1

4πErkBT
exp

[
− (Er − eDγ V/2)2

2ErkBT

]

× exp

[
− (ε + eSγ V/2)2

2ErkBT

]
(50)

where Dγ = γ (z2) − γ (z1) and Sγ = γ (z2) + γ (z1). The
product of the first factor and the first exponential function in
the rhs of equation (50) equals the maximum value ρmax of
ρ (ε) which depends essentially on Dγ and V . The second
exponential function in the rhs of equation (50) shows that the
position of the maximum shifts with the change of the bias
voltage. The magnitude of this shift is proportional to Sγ .
Since γ (z2) > γ (z1), the valence level ε0

2 approaches the level
ε0

1 with the increase of the bias voltage in the region V < Vmax.
Therefore, the tunnel current also increases due to the increase
of the overlap of the densities of states ρ1(ε) and ρ2(ε). Then,

8
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(a) (b)

(c)

Figure 7. Dependence of the tunnel current on the bias voltage at η = 0 and different values of physical parameters in the case of strong
coupling with electrodes and weak coupling between the groups. The current is normalized to e2πV 2

12/h̄Er. (a) z1/L = 0.25,� = 0.1 eV. 1.
LD/L = 0.1, Er = 0.2 eV; 2. LD/L = 0.3, Er = 0.2 eV; 3. LD/L = 0.1, Er = 0.5 eV; 4. LD/L = 0.3, Er = 0.5 eV. (b) � = 0.1 eV,
Er = 0.2 eV. 1. LD/L = 0.1, z1/L = 0.375; 2. LD/L = 0.1, z1/L = 0.25; 3. LD/L = 0.3, z1/L = 0.375; 4. LD/L = 0.3, z1/L = 0.25.
(c) z1/L = 0.25, LD/L = 0.3, Er = 0.5 eV. 1. � = 0.1Er; 2. � = 0.2Er.

for V > Vmax, the current decreases, which is evidence of
an inverted region for the electron transfer between the redox
groups (figure 7(a)). Unlike the situation for the bulk of the
solution, here the inverted region appears due to the decreasing
overlap of the electron densities of states of two groups. The
behavior of the current described above is mainly related to
the dependence of ρmax on V . Using this dependence, a value
of Vmax can be estimated as 2Er/Dγ . The smaller LD/L, the
smaller Dγ (e.g., for z1/L = 0.25 one obtains that Dγ = 0.08
for LD/L = 0.1 and Dγ = 0.3 for LD/L = 0.3).

The tunnel current is proportional to ρmax and the
sum of two error functions 2

∫ u
0 exp(−x2) dx/π1/2 +

2
∫ v

0 exp(−x2) dx/π1/2 where

u = eV (1 − Sγ /2)/(2ErkBT )1/2,

v = (eV Sγ /2)/(2ErkBT )1/2.
(51)

When u > 1, the first term of the sum is almost
independent of V and equal approximately to 1 so that the sum
at small values of LD/L (strong screening, small Sγ ) shows a
tendency to saturation increasing very slowly from 1 to 2 with

the increase of V due to the V dependence of the second term.
Finally, for v > 1, the sum equals approximately 2. Since at
large LD/L (the weak screening) the parameter Sγ ≈ 1, it
follows from equation (51) that u ≈ v. Therefore, the sum
increases first from 0 to 2 with the increase of V and then takes
an almost constant value at u = v > 1. Thus, the dependences
of the current on the bias voltage shown in figures 7(a) and (b)
are ruled by the parameters 2kBT/Dγ , u and v. The critical
values of the latter parameters are u = v = 1. For example,
we have 2kBT/(eDγ ) ≈ 0.6 V, V ≈ 0.10 V at u = 1 and
V ≈ 2.4 V at v = 1 for Er = 0.2 eV, LD/L = 0.1. Therefore,
for V > 0.1 V, the current shows a tendency to saturation and
takes an almost constant value until V < 0.6 V (see curves
(1) and (2) in figure 7(b)). As a result, curves (1) and (2) in
figure 7(b) have almost sigmoidal form and can imitate the
experimental result of [22]. Then, for V > 0.6 V, the current
begins to increase due to the increase of ρmax (see curve (1)
in figure 7(a)). For Er = 0.2 eV and LD/L = 0.3, one
obtains that 2kBT/(eDγ ) ≈ 0.2 V, V ≈ 0.13 V at u = 1 and
V ≈ 0.4 V at v = 1 so that the current increases monotonically
with the increase of V and has no tendency to saturation even
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Figure 8. Dependence of the tunnel current on the bias voltage at
different values of the overpotential and reorganization free energy in
the case of totally adiabatic electron transitions in the spinless model.
� = 0.05 eV, V12 = 0.1 eV, z1/L = 0.25, LD/L = 0.3,
h̄ω = 0.02 eV. Er = 0.5 eV (solid lines); Er = 0.2 eV (dashed
lines). η = 0 (1); η = 0.1 V (2). The current is normalized to
2eV 2

12�
2/π h̄(h̄ω)3.

in the region V < 0.5 V (see curves (2) and (4) in figure 7(a)
and curves (3) and (4) in figure 7(b)).

It should be noted that in the model of [21] the dependence
of the energies of the valence levels on the bias voltage is
ignored (γ (z2) = γ (z1) = Dγ = Sγ = 0), so the dependence
of the tunnel current on the bias voltage is characterized only
by the single parameter u = eV /(2ErkBT )1/2. Therefore, the
current takes an almost constant value when u > 1 as was
obtained in [21]. On the other hand, the dependence of the
energies of the valence levels on the bias voltage was taken into
account in [26] but the effect of the Debye screening on this
dependence was ignored. As a result, a tendency to saturation
of the current in the region V < 0.5 V was not obtained.

Figure 7(c) shows that for the bias voltage values on the
left and on the right (inverted region) of the maximum the
current is larger for larger � due to a stronger overlap of the
electron densities of states of the redox groups. In the region
of the maximum, in contrast, the current is larger for smaller�
due to a better overlap of electron densities of states with the
energy window between the Fermi levels of the leads.

For the totally adiabatic case we start from the spinless
model which may be envisaged if the Coulomb repulsion
between two electrons located in the same group is very large
whereas it is negligibly small for the electrons located on
the valence orbitals of different groups. As was discussed in
section 5 the case of interaction of both redox groups with the
same single vibrational mode q is considered since only in this
case can AFES be constructed. This may correspond to the
situation where a local oscillator is located symmetrically with
respect to both groups. We discuss below the most interesting
case when γ10 = −γ20 = −γ0 (when γ10 = γ20, both electron
energy levels shift in the same direction with the motion along
the vibrational mode), so ε1(q) = γ0q − eξη − eγ (z1)V
and ε2(q) = −γ0q − eξη − eγ (z2)V . The equilibrium
potential corresponds here to the situation where the depths
of the potential wells of AFES are the same at η = V = 0.
The values of the coordinate q at the stationary points

Figure 9. Dependence of the tunnel current on the overpotential at
different values of the reorganization free energy in the case of
totally adiabatic electron transitions in the spinless model.
� = 0.05 eV, V12 = 0.1 eV, V = 0.1 V, z1/L = 0.25, LD/L = 0.3,
h̄ω = 0.02 eV. Er = 0.5 eV (solid line); Er = 0.2 eV (dashed line).
The current is normalized to 2eV 2

12�
2/π h̄(h̄ω)3.

(maximum and minima of AFES) are equal approximately to
〈n2 − n1〉, so in the neighborhood of one minimum one of the
energy levels is oxidized whereas the other one is reduced and
vice versa for the second minimum. At the transition point,
q = 0. Near the top of the AFES both energy levels of
the redox groups lie approximately within the energy window
between the Fermi levels of the electrodes. The reorganization
energy for the electron transition between the redox groups is
defined in a usual way as Er = h̄ω(�q0)

2/2 = 2γ 2
0 /h̄ω.

Only the symmetric case �L = �R = � is considered.
The tunnel current is calculated as the thermal Boltzmann
average of the partial tunnel current (equation (44)) with AFES
given by equation (49). The Fermi distribution functions in
equations (42)–(44) were replaced by the stepwise functions.

Figure 8 shows the dependence of the current on the bias
voltage for different values of the reorganization free energy
and overpotential. Like for other limiting cases discussed
above there is no tendency to saturation. The smaller η, Er,
� and V12, the earlier the inverted region starts. The physical
meaning of this result is similar to that considered above for
partially adiabatic limit.

The system under consideration demonstrates an interest-
ing new effect shown in figure 9. Unlike single-level bridged
contacts the current/overpotential dependence has two distinc-
tive maxima (when V12 > �) at the points shifted from
the equilibrium potential in the negative and positive direc-
tions. The positions of the maxima can be estimated as

V/2± (2/eξ)
√

V 2
12 −�2 − (eV/2)2. The position of the min-

imum between these maxima equals approximately V/2. It
should be noted that a weakly pronounced strongly overlapping
double-peak structure of the current/overpotential dependence
obtained in [26] appears only in the case when the reorganiza-
tion energies EL and ER are not equal to each other and has a
different physical nature from the effect discussed above.
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Figure 10. Dependence of the tunnel current on the bias voltage at
different values of � and V12 in the case of totally adiabatic electron
transitions in the spinless model. η = 0.5 V, z1/L = 0.25,
LD/L = 0.3, h̄ω = 0.02 eV, Er = 0.5 eV. 1: � = 0.05 eV;
V12 = 0.1 eV; 2: � = 0.05 eV; V12 = 0.05 eV; 3: � = 0.025 eV;
V12 = 0.05 eV. The current is normalized to 2eV 2

12�
2/π h̄(h̄ω)3.

This effect is peculiar for a two-redox-group system
because maxima appear when the bonding or antibonding
levels enter the energy window. It disappears when V12 < �

and the role of the hybridization of electron orbitals of two
groups is less pronounced, so the system behaves similarly to
a single-level system.

Figure 10 demonstrates a rectification effect which
appears at non-zero overpotential. The rectification ratio
increases with decrease of � and V12. A similar result was
obtained in [26]. However, as was discussed above, we take
into account both reduced and oxidized states of the redox
groups, whereas only the reduced state of group 1 and oxidized
state of group 2 were considered in [26].

The limit of weak Coulomb repulsion U12 between the
electrons considered above may be the case when the valence
orbitals are rather diffuse, so this does not contradict with
large values of hybridization parameter V12. Another limit is
considered below where both the Coulomb repulsion U12 and
the hybridization parameter are large. This can take place when
the valence orbitals are rather localized but their overlap is
strong. Figure 11 shows the dependence of the tunnel current
on the bias voltage at η = 0 for different values of Ld/L.
Solid lines are calculated for the case of strong interaction
between the redox groups and weak interaction of the groups
with the electrodes in the limit of a large value of U12, using
equation (39). The dashed line corresponds to the totally
adiabatic case and is calculated also in the limit of a large value
of U12 using the method of [31] as was discussed at the end of
section 5.

The behavior of the current given by equation (39) is also
ruled by the parameters u and v (see equation (51)). Since
equation (39) corresponds to the electron tunneling through
a single (bonding) state of the redox groups, the parameter
2kBT/Dγ has no effect on the current in this case. However,
a new parameter V12/Dγ appears because the tunnel current
depends essentially on the parameter A = [(eV Dγ )2 +
4V 2

12]1/2 for large values of V . When eV < V12/Dγ , the

Figure 11. Dependence of the tunnel current on the bias voltage at
different Ld and Er in the limit of large values of U12 in the case of
strong interaction between the redox groups and weak interaction of
the groups with the electrodes (equation (39)) (solid lines) and for the
totally adiabatic transitions (dashed line). η = 0, z1/L = 0.375,
V12 = 0.3 eV. 1. Ld/L = 0.1, Er = 0.5 eV; 2. Ld/L = 0.3,
Er = 0.5 eV, 3. Ld/L = 0.5, Er = 0.5 eV; 4. Ld/L = 2,
Er = 0.05 eV. For the dashed curve Ld/L = 0.1,�L = 0.5� cos2 θ ,
�R = 0.5� sin2 θ , � = 0.1 eV. The current is normalized to j
(0.5 V).

current increases with increase of V and, as in the case of the
one-level bridge molecule, tends to a constant value 4 jmax/3
for v > 1. However, the rate of approach of the tunnel
current to this constant value is determined by the dependence
of�F (2)

IL on V . It follows from the physical meaning of�F (2)
IL

that for large electrolyte concentrations (small LD/L, strong
screening) �F (2)

IL is almost independent of V , which results
in a very slow increase of the tunnel current with increase of
V (see curve (1) in figure 11 which is similar to curves (1)
and (2) in figure 8(b)). Indeed, the sum Sγ = γ (z1) + γ (z2)

as well as the difference Dγ = γ (z1) − γ (z2), which enter
the rhs of equation (35), behave as exp[−L/(2LD)] at small
LD/L, i.e., are exponentially small. Therefore, curve (1) has
almost sigmoidal form in the region V < 0.5 V and can also
imitate the experimental result of [22] (V = 0.16 V at u = 1
and V = 12.7 V at v = 1 for Er = 0.5 eV, LD/L = 0.1
and z1/L = 0.375). In the totally adiabatic case the tunnel
current increases faster at the same value of LD/L as compared
with curve 1 due to a faster decrease of the activation barrier
of the redox reaction with increase of V in the small bias
voltage region at values of the width� of the antibonding level
inherent to the adiabatic reactions [31]. When LD/L increases,
Sγ and Dγ increase too and tend to 1 and δ/L, respectively,
so the tunnel current for Er = 0.5 eV, LD/L = 0.3 and
LD/L = 0.5 increases monotonically and has no tendency to
saturation (see curves (2) and (3) in figure 11).

Since the tunnel current is independent of the parameter
2kBT/Dγ in the case under consideration, the current–bias
voltage dependence of sigmoidal form can also be obtained
in the weak screening limit for small values of Er. As was
discussed above, we have u ≈ v for large values of LD/L, so
the regions of V where u > 1 and v > 1 coincide. One obtains
that V ≈ 0.1 V at u = v = 1, Er = 0.05 eV and LD/L = 2.
As a result, the tunnel current takes almost constant values in

11
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Figure 12. Dependence of the tunnel current
jnorm. = j/(21/2 jmax)× 102 on the overpotential at different values of
the bias voltage in the limit of large values of U12 in the case of
strong interaction between the redox groups and weak interaction of
the groups with the electrodes (equation (39)). z1/L = 0.375,
Ld/L = 0.1, V12 = 0.3 eV, Er = 0.5 eV. V = 0.1 V (1), V = 0.2 V
(2), V = 0.3 V (3).

the interval 0.3 V < V < 1 V in this case (see curve (4) in
figure 11).

When the bias voltage is larger than V12/(eDγ )
(V12/(eDγ ) = 14, 1.8 and 1.2 V for V12 = 0.3 eV and
LD/L = 0.1, 0.3 and 0.5, respectively), the tunnel current
tends to jlim(V ) = 8 jmaxV 2

12/[A2(cos2 θ + 1)] and, in contrast
to the case for the one-level bridge molecule, goes to zero if V
tends to infinity.

The current–bias voltage dependences presented in
figure 11 were obtained at η = 0. The dependences of
the tunnel current on the overvoltage calculated with the use
of equation (39) are presented in figure 12. Since ηmax

has the order of V/2 and, therefore, strongly affects �F (2)
IL

(see equation (35)), values of j (ηmax) increase quickly with
increase of V even for LD/L = 0.1 as shown in figure 12.

7. Concluding remarks

In the present paper we have considered in detail the
electron tunneling through a symmetric electrochemical
contact involving two redox groups in the tunnel gap. Various
limiting cases are studied. The treatment is more rigorous
and complete as compared to other works [21, 24–26]. The
expressions (21), (24), (27), (39), (42)–(43) and (49) for the
tunnel current and AFES are obtained for different limiting
cases. The results of calculations of the tunnel current for
totally non-adiabatic, partially adiabatic and totally adiabatic
limits are presented.

The following conclusions can be drawn from these
results:

(1) The system under discussion manifests negative differen-
tial resistance and rectification. In contrast to the findings
of [1], the rectification is due not to the intrinsically asym-
metric location of the energy levels of the redox groups
but due to the non-zero overpotential in purely symmetric
contact, which is peculiar to the electrochemical contacts.

(2) The dependence of the current on the bias voltage in most
cases reaches a maximum in the neighborhood of the
reorganization energy. At the same time, in the partially
adiabatic limits considered in sections 3 and 4, a tendency
to saturation of the current–bias voltage dependence was
obtained at small values of the bias voltage and LD/L
(see figures 7(b) and 11). In both limits, the current
monotonically increases with the bias voltage at small
V . However, if the screening of the electric potential
in the tunnel gap is strong, this increase is very slow,
resembling the sigmoidal curve observed in [22] at least
in the experimental range of the bias voltage variation. It
should be noted that the polarization of the parts of the
long chain molecule adjacent to the electrodes can also
give a contribution to the screening, reducing thereby the
effective ratio LD/L. It should also be noted that the
sigmoidal curves of j (V )were obtained for quite different
limiting cases: strong interaction of the redox groups with
the electrodes and weak interaction between the redox
groups at U12 ≈ 0 (section 3) and strong interaction
between the redox groups and weak interaction of the
groups with electrodes at large U12 (section 4). These
cases can be distinguished experimentally when the region
V > 0.5 V is investigated. Namely, the current starts to
increase rapidly with the increase of V above 0.5 V in the
first case and proceeds to increase slowly in the second
one. The tendency to saturation of the j (V ) curve was
also obtained in the case of weak screening of the potential
in the tunnel gap for small values of Er (see curve (4) in
figure 7(b)).

(3) For most limiting cases considered, the dependence of
the current on the overpotential has a maximum in the
neighborhood of the equilibrium potential similar to that
for the one-level system. However a new effect was found
when U12 is negligibly small in the limit of the totally
adiabatic regime. The current/overpotential dependence
exhibits then two maxima. Each maximum corresponds
to resonance tunneling through bonding or antibonding
orbitals, depending on the value of the overpotential.
Therefore the separation of the positions of the maxima
depends on V12.
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Appendix A

The quantities a, b and d in equation (16) and the rate constants
are determined by the following relationships:

a = k12kL1 (1 − u) (1 + 1/v) , (A.1)
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b = kL1k12 (2u + u/v − 1)+ kL1k2R (1 +w) (1 + 1/v)

+ k12k2R (1 + uw) , (A.2)

d = kL1 [k12u + k2R (1 +w)] + k12k2Ruw, (A.3)

where

u = exp

{
e (ξ1 − ξ2) η + e

[
γ (z1)− γ (z2)

]
V

kBT

}

, (A.4)

v = exp

{
eξ1η + eγ (z1) V

kBT

}
, (A.5)

w = exp

{
eξ2η − e

[
1 − γ (z2)

]
V

kBT

}

, (A.6)

k12 = k0 exp

{

−{E12 + e
[
γ (z1)− γ (z2)

]
V }2

4E12kBT

}

, (A.7)

kL1 = 2kL

∫
dε

2kBT
fL (ε)

× exp

{
− [EL +�FL1 − (ε − εFL)]

2

4ELkBT

}
(A.8)

k2R = kR

∫
dε

2kBT

[
1 − fR (ε)

]

× exp

{
− [ER +�F2R + (ε − εFR)]

2

4ERkBT

}
. (A.9)

Here EL and ER are the medium reorganization energies for
the electron transitions at the electrodes (EL = ER = E for
symmetric contacts), kL and kR are the pre-exponential factors.
The factor 2 in the rhs of equation (A.8) takes into account the
spin degeneracy of the electronic states of the electrode.

The rate constants for forward and backward transitions
are related by detailed balance relationships as follows:

k21 = k12u; k1L = kL1/v; kR2 = k2Rw. (A.10)

Equations (A.8) and (A.9) can be rewritten in the form

kL1 = 2kL exp
{− [EL +�FL1]2 /4ELkBT

}
IL, (A.11)

k2R = kR exp
{− [ER +�F2R]2 /4ERkBT

}
IR (A.12)

where

IL =
∫

dx exp[x(1 +�FL1/EL − kBT x/EL)]
1 + exp(2x)

, (A.13)

IR =
∫

dx exp[x(1 +�F2R/ER − kBT x/ER)]
1 + exp(2x)

. (A.14)

If |�FL1| � EL and |�F2R| � ER, then

IL ≈
(
πEL

kBT

)1/2

exp
{
[EL +�FL1]2 /4ELkBT

}
, (A.15)

IR ≈
(
πER

kBT

)1/2

exp
{
[ER +�F2R]2 /4ERkBT

}
. (A.16)

Appendix B

The term Hint in equation (29) has the form

Hint. (ni , qk) = −
∑

k

(γ1kqkn1 + γ2kqkn2) (B.1)

where the γik are the coupling constants. Since the operator
of the total number of electrons N = n1 + n2 commutes
with the total Hamiltonian of equation (29) we have N |ψ〉 =
1|ψ〉 for arbitrary one-electron state |ψ〉 and therefore one can
transform the Hamiltonian as follows:

H = H12 − n1

[
∑

k

γk (qk − q2k)+ Emix − 2ER

]

+ Hph (pk, qk − q2k)− ER (B.2)

where γk = γ1k − γ2k , q2k = γ2k/h̄ωk ,

EL = 1

2

∑

k

γ 2
1k

h̄ωk
, ER = 1

2

∑

k

γ 2
2k

h̄ωk
,

Emix =
∑

k

γ1kγ2k

h̄ωk

(B.3)

and EL = ER for the symmetric contact.
Within the BOA the adiabatic free energy surface (AFES)

Uad,I.(qk) is given by the expression

Uad,I (qk) = 1
2

∑

k

h̄ωk (qk − q2k)
2 + EI (qk). (B.4)

Here EI(qk) is the energy of the electronic subsystem. It is
the eigenvalue of the Hamiltonian presented by the first two
terms in the rhs of equation (B.2). The energy EI(qk) can be
calculated with the use of equation (31) with the substitution
of ε1(qk) for ε0

1 where

ε1(qk) = ε0
1 −

∑

k

γk(qk − q2k)+ 2ER − Emix. (B.5)

As in [33], a single effective coordinate q can be
introduced:

q =
∑

k

γk(qk − q2k)/(2E12) (B.6)

where

E12 = 1

2

∑

k

(γ1k − γ2k)
2

h̄ωk
= EL + ER − Emix. (B.7)

The AFES then takes the form

Uad,I (q) = E12q2 + EI(q) (B.8)

where

EI(q) =
{
ε1(q)+ ε0

2 − [
(ε1(q)− ε0

2)
2 + 4V 2

12

]1/2
}/

2

(B.9)
and

ε1(q) = ε0
1 − 2E12q + 2ER − Emix. (B.10)
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It is known [30] that the AFES of equation (B.8) has a
single potential well if V12 > 0.5E12 (the adsorption regime).
Let us assume that EL = ER = Emix when γ1k and γ2k have
arbitrary values (in particular when γ2k �= Cγ 1k). Then, since
ε0

1 − ε0
2| = e|[γ (z1) − γ (z2)]V | � E12, AFES Uad,I (q) is

an even function of q − 1/2, and, therefore, the coordinate qs

of the minimum of the potential well in the adsorption regime
equals approximately 0.5. It can be shown that qs = 〈n1〉.
Thus, for the adsorption state of the bridge molecule we have
〈n1〉 ≈ 〈n2〉 ≈ 1/2.
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